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Supplementary Note 1: Interferometer for Polarimetry 

Pump-probe pulses for the time-resolved polarimetry experiments are generated by a home-built  

Mach-Zehnder interferometer that is actively phase-stabilized using Pancharatnam’s phase [39]. The 

optical setup of the interferometer is depicted in Supplementary Fig. 1. Adjusting the polarizations of 

the femtosecond pump- and probe pulses is accomplished by half-waveplates in each of the two arms 

of the interferometer, 𝜆1/2
pump

 and 𝜆1/2
probe

. As the beam splitters in the interferometer and subsequent 

mirrors within the optical setup modify the polarization states, a combination of half- and quarter 

waveplate has been added to the output of the interferometer. Each of the pump- and probe-pulses 

thus passes through three (motorized) waveplates:  

Pump Pulses: 𝜆1/2
pump

, 𝜆1/2
(O)

, 𝜆1/4
(O)

  and Probe Pulses: 𝜆1/2
probe

, 𝜆1/2
(O)

, 𝜆1/4
(O)

 

whereas both pump and probe pulses pass through the same 𝜆1/2
(O)

 and 𝜆1/4
(O)

 waveplates. Any 

polarization state can be selected for the pump, whereas the attainable probe polarizations for a given 

pump polarization are somewhat limited. Furthermore, the differently polarized probe pulses should 

exhibit somewhat similar intensity. All polarization states are verified by measuring their Stokes vector 

with a commercial polarimeter placed in a conjugate sample plane. Usually, to actively stabilize the 

interferometer, linearly polarized HeNe laser beams of orthogonal polarization are passed through the 

interferometer, and the intensity of the HeNe interference signal at the output of the interferometer 

is measured with a photodiode behind a 𝜆1 4⁄
HeNe waveplate and a polarizer [39,40]. Rotating the 

polarizer causes the intensity on the diode to change, which is the input signal for a home-built 

proportional-integral-differential (PID) feedback loop that moves the piezo-driven delay stage. In this 

way the interferometer is actively stabilized, and the delay can be adjusted by rotating the polarizer. 

Unfortunately, inserting motorized polarization optics into the two arms of the interferometer also 

affects the HeNe laser polarization and thus affects the Pancharatnam’s phase stabilization concept. 

To circumvent this problem, we added 𝜆1/4
HeNe quarter-waveplates to each of the arms of the 

interferometer so that only the HeNe beams passed through them. The achromatic pump-probe 

polarization waveplates 𝜆1/2
pump

 and 𝜆1/2
probe

 then only introduce a phase-shift into the HeNe beam. To 

avoid destruction of the circular polarization of the HeNe beam by subsequent optics, the HeNe 

polarizations in the two arms are converted back to linear (and orthogonal) polarization by two thin-

film polarizers. Again, these polarizers are mounted so that only the HeNe beams pass through them. 

In this configuration a change of the pump- or probe polarization does not affect the intensity, the 

linear polarization state of the HeNe beams, or the working principle of the stabilization. Instead, a 

change in pump-probe polarization merely introduces a phase shift in the HeNe signal. The feedback 

loop of the stabilization responds to the phase shift and transfers it over to a shift of the temporal 



overlap of the femtosecond laser pulses. A solution to this problem will be discussed in Supplementary 

Note 2.  

To estimate the temporal resolution, we have extensively investigated the long-term stability as well 

as the temporal jitter of the stabilized interferometer. Performing a pump-probe experiment with the 

presented interferometer on a single groove we monitored the position of a (plane-wave) SPP wave-

packet over several hours using the fastest sampling rate of our detector (200 ms exposures) to 

characterize the in-situ temporal stability. Using this method, we could verify temporal jitters to be 

well-below 100 attoseconds and could not find any long-term temporal drift. We conclude that our 

temporal resolution is well-below the delay scanning step size, which is thus the fundamental limit for 

the temporal resolution. 

 

 

  

 

Supplementary Figure 1: Overview of the optical setup of the interferometer used for polarimetry. A HeNe 

laser beam (grey) is passed in parallel to the fs pulses (light red) through a phase-stabilized Mach-Zehnder 

interferometer. The polarization state of the fs pump- and probe pulses can be adjusted using the four 

waveplates 𝜆1/2
pump

, 𝜆1/2
probe

, 𝜆1/2
(O)

 and 𝜆1/4
(O)

. The combination of the two quarter waveplates 𝜆1/4
HeNe with 

subsequent polarizers ensures that the phase-stabilization works for all possible pump- and probe 

polarizations. 



Supplementary Note 2: Delay Time Correction and Phase Extraction 

A rotation of the 𝜆1/2
probe

 waveplate introduces a phase-shift into the HeNe section of the interferometer 

which changes the HeNe signal on Diode A in Supplementary Fig. 1 and which in turn causes the 

stabilization to change the delay stage position in the interferometer. As such, pump-probe images 

taken at the same nominal delay but with different probe polarizations will represent the situation at 

different delay times. A precise determination of the time-zero condition for every polarization is 

crucial for a successful polarimetric vector-field reconstruction. At every nominal delay step and for 

every polarization state of the experiment, the laser is switched with a motorized flip-mirror between 

the PEEM and an optical spectrometer, 

where the linear interference of pump- and 

probe pulses (spectral interference) is 

measured. The spectral interference 

measurements recorded during the meron 

pair experiment are shown as function of 

delay time for the four used probe 

polarizations in Supplementary Fig. 2.  

For all polarizations and at all photon 

energies a periodic arrangement of maxima 

and minima in the spectral interference is 

clearly visible. This oscillation resembles the 

interference at different wavelength 

components comprising the fs laser pulses. 

As higher photon energies correspond to 

shorter oscillation periods, the maxima are 

inclined, and the inclination increases with 

delay time. As such, only at the time of exact 

temporal overlap (time zero, Δt = 0 fs) the 

inclination would be absent.  

Only the Stokes vectors of the pump and 

probe polarizations are accessible to a 

polarimetric measurement, while the full-

phased Jones vectors are needed for the 

reconstruction of the polarimetric PEEM 

data. Unfortunately, there is no bijective 

mapping between Stokes and Jones vectors, 

since the Jones vectors can always contain 

an additional phase that is not included in 

the Stokes vectors.  

Both the time zero and the phase difference 

between the Jones vectors of the pump and 

probe pulses can be extracted from the spectral interference in Supplementary Fig. 2. For every 

polarization the spectral interference is numerically fitted by a simple plane wave model, containing 

the time-zero, the phase difference of the pump- and probe Jones vectors, and a calibration of the 

actual delay time as fit parameters. Note that the data in Supplementary Fig. 2 has already been 

horizontally shifted so that the time zero is the same for all polarization series.  

  

 

 

Supplementary Figure 2: Spectral interference. The 

output of the interferometer is directed to an optical 

spectrometer and spectrally resolved autocorrelation 

traces are recorded. A two-dimensional fit to the data 

using a plane-wave model provides the true point of 

zero-time delay. 



Supplementary Note 3: PEEM Data Analysis Pipeline  

Pump-probe sequences with different probe polarization are fed into a standardized data analysis 

pipeline that is similar to the one we have used in earlier work [25]. In a perfect experiment, two 

(mostly orthogonal) probe polarizations would be sufficient for a complete characterization of the 

components of the SPP field in the surface plane. As the pump polarization must be adjusted to match 

the requirements of the SPP excitation structure, however, adequate probe polarizations cannot 

always be achieved. Instead, we sample the SPP field using several different probe polarizations that 

roughly cover the Poincaré sphere. The loosened requirement for the probe polarizations is ultimately 

an advantage of our method since we do not need to precisely control the probe polarization but 

merely need to precisely measure it. This approach is similar to standard polarimetric imaging in optics 

or phase-front estimations using interferograms (see for example Ref. [41]), where multiple redundant 

measurements provide an overdetermined system and are used to tremendously reduce 

measurement errors. In our current work, using four different probe polarizations has proven to be a 

good compromise between measurement time and fulfilling the above requirements. 

The four raw PEEM images in Supplementary Fig. 3a were recorded at identical pump but different 

probe polarizations and thus show different probing of the same SPP field. Clearly, the different 

relative polarizations manifest themselves in the angular distribution of the PEEM signal. As a first step 

of the data analysis the individual images in each polarization sequence are drift-corrected using 

standard cross-correlation drift techniques. Afterwards, we extract a signal from the data that 

corresponds to the scalar product between SPP field vector and probe field vector as follows: In a 

normal-incidence geometry, the SPP related and delay time Δ𝑡 dependent local yield 𝑌2PPE(𝐫, Δ𝑡) in 

the nonlinear PEEM images far away from the exciting Archimedean spiral is determined by [42] 

𝑌2PPE(𝐫, Δ𝑡) = ∫ |𝐄probe(𝑡 − Δ𝑡) + 𝐄spp(𝐫, 𝑡)|
4

 d𝑡
∞

−∞
. Here, 𝐄spp(𝐫, 𝑡) describes the spatially varying 

SPP field and 𝐄probe(𝑡 − Δ𝑡) represents the time-delayed but spatially homogeneous probe laser 

pulse. Note that this equation can be easily converted into the representation given in Ref. [25] by 

linearizing the expression in the SPP field.  

 

Supplementary Figure 3: (a) Raw PEEM data for linear pump and different probe polarizations on a 

logarithmic color scale and (b) the real part of the corresponding Fourier-filtered images in a linear false-color 

representation. In the raw data the signal is dominated by plasmoemission, which can be filtered out due to 

its dependence on the angular frequency 𝜔 and the wavevector 𝐤SPP.  



To emphasize the next step of the data processing, we neglect pulse envelopes and express the 

argument of the integral as an averaged emission rate. The expansion of the binomial results in   

ΓSPP(𝐫) ∝ |𝐄spp(𝐫)|
4

+ |𝐄probe|
4

+ 4|𝐄probe|
2

⋅ |𝐄spp(𝐫)|
2

 

+4 (|𝐄probe|
2

+ |𝐄spp(𝐫)|
2

) ⋅ Re {𝐄probe
∗ ⋅ 𝐄spp(𝐫) ⋅ exp (𝑖(𝐤spp ⋅  𝐫 − 𝜔 Δ𝑡))} 

+2 Re {𝐄probe
∗ ⋅ 𝐄spp ⋅ exp (𝑖(2 𝐤spp ⋅  𝐫 − 2 𝜔 Δ𝑡))}. 

(Eq. 1) 

All terms of the above equation, however, contribute to the electron yield and the SPP-related signal 

of interest is superposed by static and delay time dependent contributions. It is important to note that 

only the argument of the exp(… ) function in the fourth term depends directly on 1 ⋅ 𝐤spp and 1 ⋅ 𝜔, 

i.e., on the momentum vector and the angular frequency of the SPP. The nonlinear mixing of fields in 

different power is understood by quantum path interferences [27] and it is the purpose of the following 

data analysis to extract 𝐄spp. 

To separate the fourth term of the Supplementary Equation 1 from the raw data we first Fourier-filter 

the data spatio-temporally to the fundamental frequency 1 ⋅ 𝜔 and the SPP momentum 1 ⋅ |𝐤spp|.  The 

temporal Fourier-filtering of our photoemission signal is performed such that only the positive-

frequency part is maintained. Note that such filtering was already applied to the data in our earlier 

work [25] and that it has also been used in other topological PEEM work [14].  

The real part of the Fourier-Filtered images of the upper panels in Supplementary Fig. 3a are shown as 

Supplementary Fig. 3b. The filtered data represents the complex projection of the SPP as excited by 

the pump-pulse on the different probe polarizations, with all other contributions to the PEEM signal 

filtered out. The relevant part of the emission rate is then proportional to 

Γ1ω,1k(𝐫) ∝ (|𝐄probe|
2

+ |𝐄spp(𝐫)|
2

) |𝐄probe| 𝐉 ⋅ 𝐄spp,∥, 

where the probe electric field 𝐄probe is expressed by its magnitude |𝐄probe| multiplied with the 

corresponding Jones vector 𝐉 to describe the correctly phased polarization state. We divide the 

extracted signal by |𝐄probe|
3

 for each probe polarization to normalize the yield to the part linear in 

𝐄spp. Furthermore, we combine the equations for all polarizations into one equation by introducing 

matrices 𝐀  and 𝐌. The extracted photoemission yield for all probe polarizations can be written for 

every time delay as a function containing the scalar SPP scaling factor β 

𝐘1ω,1k(𝐫) = (𝟏 + β𝐀 |𝐄spp(𝐫)|
2

) 𝐌 𝐄spp,∥(𝐫).  (Eq. 2) 

Note that the respective contribution to the photoemission yield 𝐘1ω,1k(𝐫) and all electric fields are 

complex numbers due to the Fourier-filtering. In the case of 𝑛 probe polarizations the diagonal (𝑛 × 𝑛) 

matrix contains the inverse probe intensities |𝐄probe,i|
−2

 

𝐀 = (

|𝐄probe,1|
−2

⋯ 0

⋮ ⋱ ⋮

0 ⋯ |𝐄probe,𝑛|
−2

). 

The matrix 𝐌 in Supplementary Eq. 2 contains the complex 2D Jones vectors of all used probe 

polarizations, i.e., with 𝑛 probe polarizations 𝐌 becomes a (𝑛 × 2) matrix. Due to the normal incidence 

geometry, the electric field of the probe pulse lies within the surface plane and therefore 𝐌 only acts 

on the in-plane component of the SPP field 𝐄spp,∥(𝐫). A reconstruction of 𝐄spp(𝐫) using Supplementary 

Eq. 2 then relies on the knowledge of the exact Jones vectors of all probe polarizations in relation to 

the Jones vector of the pump polarization. Unfortunately, only the Stokes vector of a polarization 



states is accessible to a direct measurement, and the Jones vectors must be determined from a spectral 

interference measurement. This procedure is described in Supplementary Note 2. 

With the knowledge of 𝐌, Supplementary Eq. 2 can be inverted to form a fixed-point equation for the 

SPP’s electric field in the surface plane 

𝐄spp,∥ = 𝐌−1 (𝟏 + β𝐀 |𝐄spp|
2

)
−1

 𝐘1ω,1k(𝐫),    (Eq. 3) 

where 𝐌−1 is the Moore-Penrose pseudo-inverse of 𝐌. It is important to emphasize that |𝐄spp|
2

 also 

contains the component 𝐄spp,⊥ of the SPP field that is perpendicular to the surface plane. We use the 

divergence free nature of the continuous fields in the vacuum which, combined with the evanescent 

character of the SPP field in the direction perpendicular to the surface plane, allows to calculate 𝐄spp,⊥ 

from 𝐄spp,∥ using Maxwell’s equations. To account for surface and volume effects in the photoemission 

process, we follow the work by Podbiel et al. [26] and introduce a scaling parameter 𝛼 to balance the 

photoemission yields from 𝐄spp,⊥ and 𝐄spp,∥ 

|𝐄spp|
2

↦ |𝐄spp,∥|
2

+ 𝛼 |𝐄spp,⊥|
2

. 

Supplementary Eq. 3 can then be solved by a numerical fixed-point iteration, and the scaling 

parameters 𝛼 and 𝛽 are determined by minimizing the deviation between the experimental (and 

Fourier-filtered) yield and the yield calculated from the reconstructed fields. As a starting point for the 

fixed-point iteration, we assume no SPP fields on the surface. Note that the aforementioned 

calculation of 𝐄spp,⊥ from 𝐄spp,∥ has to be performed within each iteration. Using Maxwell’s equation 

𝛁 × 𝐄SPP = −𝜇0𝜕𝑡𝐇 we can calculate the time-dependent magnetic field from the time-dependent 

electric SPP field, assuming that the envelope of the pulses is longer than the oscillation period. 

  



Supplementary Note 4: Sample design 

Details of the used excitation structures are shown in Supplementary Fig. 4a for a trimeron (discussed 

in Supplementary Note 5) and Supplementary Fig. 4b for the meron pair (discussed in the main 

document), respectively. Scanning electron microscopy (SEM) images of each structure are shown as 

greyscale images. The dark curved lines in the SEM images correspond to the FIB-milled grooves at 

which SPPs are excited. The dashed white circles mark discontinuities within the excitation structures 

with a gap-size of one SPP wavelength. The excitation structure for the trimeron in Supplementary Fig. 

4a is a segmented Archimedean spiral with two gaps and a total orbital angular momentum of 𝑙 = 2. 

The structure for the meron pair in Supplementary Fig. 4b is a simple non-segmented Archimedean 

spiral with only one gap and an orbital angular momentum of 𝑙 = 1. The rendered images of the Au 

platelets illustrate the choice of pump-polarization relative to the gaps in the structure. In both cases 

the linear polarization direction was chosen to be orthogonal to a fictitious line through the endpoints 

of the gaps.  

  

  

Supplementary Figure 4: The used excitation structures for (a) the trimeron and (b) the meron pair alongside 

illustrations of the used excitation polarization. The open red circles in the scanning electron microscopy 

(SEM) images indicate locations where the excitation grove of the spiral structure exhibits a gap of one SPP 

wavelength.  



Supplementary Note 5: Analysis of a trimeron SAM texture for comparison with previous work 

To benchmark our new polarimetric PEEM method, we analyzed an excitation structure like the one in 

Supplementary Fig. 4a to create a trimeron in the center of an Archimedean spiral with 𝑙 = 2 that was 

excited with linearly polarized fs laser pulses. Such a trimeron has already been analyzed by Dai et al. 

[14], and the authors used an optical flow algorithm to extract the L-line topology from a time-resolved 

PEEM experiment. In our benchmark experiment, we performed a full determination of the electric, 

magnetic and SAM fields of the trimeron and determined the position of L-lines, the Chern density, 

and numerically integrated the Chern density over the L-line contour to obtain the Chern number. 

Supplementary Figure 5 summarizes the experimental data and results from our analysis. In analogy 

to Supplementary Figure 3b, Supplementary Fig. 5a shows the real part of Fourier-filtered pump-probe 

images for four different probe polarizations at a delay time of Δ𝑡 = 72 fs. Supplementary Figure 5c 

shows the reconstructed electric field vectors. Blue arrows point into the surface and the red arrows 

point away from the surface. The corresponding 𝐇-field is plotted in Supplementary Fig. 5d. The 𝐇 field 

 

Supplementary Figure 5: Time-resolved polarimetric PEEM measurement of a trimeron at 72 fs delay time. 

(a) Fourier-filtered PEEM images for the same pump-, but different probe polarizations. (b) vector plot of the 

experimental SAM of the trimeron. The three (red) maxima each represent one meron. (c) electric field 

vectors of the trimeron as reconstructed from the PEEM measurements. (d) plot of the magnetic field 

vectors as calculated from the experimentally determined electric field vectors. (e) L-line singularity map 

from the experimental data. (f) Chern density as calculated from the experimental SAM with indicated 

integration region (dashed yellow line).  



lies entirely within the surface plane, as expected for the 𝐇 field of an SPP. From both 𝐄 and 𝐇 field 

follows the SAM, which is plotted in Supplementary Fig. 5b. The time evolution of the experimentally 

determined SAM vectors is shown in Supplementary Video S1. It is noteworthy that the SAM texture 

is consistent with the theoretical prediction from Dai et al. [14]. The three broad (red) maxima each 

represent a SAM texture that consists of SAM vectors pointing out of the surface plane. The three 

maxima are surrounded by spin vectors pointing into the surface plane (blue). The bright lines in 

Supplementary Fig. 5e separate the two areas and indicate the locations where the transverse 

component of the SAM vectors crosses zero (L-lines). The trimeron in the center of the image is thus 

surrounded by a dumbbell-shaped L-line.  

Note that Supplementary Fig. 5e can be directly compared to Figure 4d in Ref. [14], which was 

extracted with an optical-flow algorithm from a time-resolved PEEM experiment on a similar excitation 

structure and under comparable excitation conditions. The tremendous detail in the L-line topology in 

Fig. 5e demonstrates the quality of the data obtained with our new polarimetric PEEM method. It is 

important to note that in an analytical calculation of the SAM texture of the trimeron the shape of the 

innermost L-line is expected to exhibit a simple dumbbell-shape. The deviation from this expected 

shape in Fig. 5e is due to the pulsed nature of the excitation with femtosecond laser pulses. Our 

experimental data is almost identical to the results from the Finite Difference Time Domain simulation 

in Supplementary Video 3 in the work by Dai et al. [14]. Our own numerical simulations with a simple 

Hankel-wavelet model [29] also reproduce the exact L-line contour of Fig. 5e.  

Supplementary Figure 5f shows the Chern density that was calculated from the SAM texture at a pump-

probe delay of 72 fs. Numerically integrating over the outer contour of the dumbbell L-line in Fig. 5e 

(see dashed yellow line for the integration region) yields an overall Chern number of C=1.52, consistent 

with the expectation of C=3/2 for a trimeron. 

  



Supplementary Note 6: Influence of the resolution on the Chern number 

In the main manuscript the experimentally 

determined Chern number of the meron pair is 

slightly smaller than one, the expectation from an 

analytical solution. The deviation does not reflect 

a statistical inaccuracy of the measurement but is 

caused by the limited resolution of the 

discretization of the data by the detector, and by 

the exact position of the amplitude vortex 

between the two C-points of the meron pair 

relative to the detector pixel grid.  

To support this statement, we performed 

numerical simulations of the SAM field for 

different pixel discretization and relative 

alignments of the meron SAM texture on a 

fictitious detector. The results are summarized in 

Supplementary Fig. 6, where the numerically 

integrated Chern number from simulated fields is 

plotted as function of the corresponding size of a 

detector pixel for the given field of view. As the discretization size increases, the calculated Chern 

number decreases, as the contribution of the (infinitely small) amplitude vortex to the Chern density 

becomes overestimated. 

The second important contribution is the location of the amplitude vortex relative to the detector grid. 

If the amplitude vortex is located between pixels (blue crosses), it only partly contributes to the Chern 

number. If the amplitude vortex is located on a single pixel (orange crosses), it contributes more to the 

Chern Number.  

From both contributions one would expect the estimated Chern number to decrease with increasing 

pixelation and that the on-pixel datapoints (orange crosses) have smaller Chern numbers. In the case 

of the real experiment, the calibrated field of view of 23.83 µm is imaged on a detector with 2048 × 

2048 pixel, i.e. a corresponding pixel size of 12 nm, well-matched to the electron-optical resolution of 

the microscope of 10 nm. Our cross-correlation-based sub-pixel drift correction always puts the 

amplitude vortex right in the center of four pixels, and from Supplementary Fig. 6 we then expect a 

Chern number of 0.97, in excellent agreement to the average experimental Chern number (also 

C=0.97) in Fig. 4 of the main manuscript. 

 

 

 

  

 

Supplementary Figure 6: Calculated Chern numbers 

from numerical simulations as function of pixel 

discretization. Results for two relative alignments of 

the amplitude vortex to the pixel grid are shown. 

The amplitude vortex can either be located on the 

pixel intersection (blue crosses) or the amplitude 

vortex can be centered on a pixel (orange crosses). 



Video Descriptions 

Supplementary Video S1: 3D View of the spin angular momentum of the trimeron that is discussed 

in Supplementary Note 5. 

 


